MotifNet: a motif-based Graph Convolutional Network for directed graphs
نویسندگان
چکیده
Deep learning on graphs and in particular, graph convolutional neural networks, have recently attracted significant attention in the machine learning community. Many of such techniques explore the analogy between the graph Laplacian eigenvectors and the classical Fourier basis, allowing to formulate the convolution as a multiplication in the spectral domain. One of the key drawback of spectral CNNs is their explicit assumption of an undirected graph, leading to a symmetric Laplacian matrix with orthogonal eigendecomposition. In this work we propose MotifNet, a graph CNN capable of dealing with directed graphs by exploiting local graph motifs. We present experimental evidence showing the advantage of our approach on real data.
منابع مشابه
Motif-based Convolutional Neural Network on Graphs
This paper introduces a generalization of Convolutional Neural Networks (CNNs) to graphs with irregular linkage structures, especially heterogeneous graphs with typed nodes and schemas. We propose a novel spatial convolution operation to model the key properties of local connectivity and translation invariance, using highorder connection patterns or motifs. We develop a novel deep architecture ...
متن کاملAn Ant Colony Optimization Algorithm for Network Vulnerability Analysis
Intruders often combine exploits against multiple vulnerabilities in order to break into the system. Each attack scenario is a sequence of exploits launched by an intruder that leads to an undesirable state such as access to a database, service disruption, etc. The collection of possible attack scenarios in a computer network can be represented by a directed graph, called network attack gra...
متن کاملLearning Convolutional Neural Networks for Graphs
Numerous important problems can be framed as learning from graph data. We propose a framework for learning convolutional neural networks for arbitrary graphs. These graphs may be undirected, directed, and with both discrete and continuous node and edge attributes. Analogous to image-based convolutional networks that operate on locally connected regions of the input, we present a general approac...
متن کاملEnd-to-end learning of latent edge weights for Graph Convolutional Networks
We present Latent-Graph Convolutional Networks (L-GCN), an approach for machine learning on any kind of graph structure, including directed graphs, multi-graphs and knowledge graphs. Our approach extends Graph Convolutional Networks (Kipf and Welling, 2016) by allowing for end-to-end training and by supporting any kind of data available on the edges in the network, such as numerous transactions...
متن کاملConvolutional Neural Networks over Control Flow Graphs for Software Defect Prediction
Existing defects in software components is unavoidable and leads to not only a waste of time and money but also many serious consequences. To build predictive models, previous studies focus on manually extracting features or using tree representations of programs, and exploiting different machine learning algorithms. However, the performance of the models is not high since the existing features...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.01572 شماره
صفحات -
تاریخ انتشار 2018